Collective motion

Statistical physics of biological systems — Nov 9, 20181



Examples

Non-living systems (shaken

rods, nano-swimmers, simple robots, boats, etc.)

Macromolecules
Bacteria colonies
Cells

Insects

Fish schools

Bird flocks
Mammals
Human crowds

What are the rules for

self-o rgan ization? From: T Vicsek, A Zafeiris, Collective motion,
Physics Reports, 517, 71-140, 2012 *



The “big picture”: collective behavior

« Originally used for human societies (beginning of 20t century)
 Referred to social processes and events emerging "spontaneously"”

* Use of the term has been expanded to include reference to cells, social
animals or even inanimate objects.

 Takes many forms. What is common:

The individual behavior is strongly effected by the behavior of other group
members (- The units behave differently in a group and alone)

* Main assumptions:
— Many more or less similar units

— Simple, local interactions
* between neighbors in space or
e According to an underlying network

— Collective, “emergent” group-behavior

 Collective motion is a form of collective behavior
* An other related field: Collective decision making 3



Data collection techniques

* |n order to yield data which is “good
enough” to test model results, the
individual trajectories of the group Starling video
members have to be recorded.

 Sources of difficulties:




Data collection techniques

In order to yield data which is “good
enough” to test model results, the
individual trajectories of the group
members have to be recorded.
Sources of difficulties:

— The number of units
(individuals) is often high

— They often look very much alike

— They usually move fast
The two main factors determining
the applied technology:

1. Size of the moving units

2. Size and direction of the space in
which the group can move

(both can range through many scales)

Different techniques allow for
different types of results

Starling video




Data collection technique(s) - bacteria

‘“Particle Image Velocimetry”’, (PIV)

e Developed to visualize the motion of
* small particles in
* well-confined area

An optical technique used to
produce the two dimensional
instantaneous velocity vector
field of fluids, by seeding the
media with ‘tracer particles’.
These particles are assumed to
follow the flow dynamics
accurately, and it is their motion
that is then used to calculate
velocity information.

Bacterial Collective Motion with PIV output overlaid
https://www.youtube.com/watch?v=kCJekxCB9tM



Data collection techniques — fish

e Various size of fish
* Confined or unconfined in space

* Confined space —aquarium
* 2D (avoiding the difficulties of 3D data)
* container which is “basically’”’ two dimensional (very shallow): 40 cm x 30 cm x 2 cm.
* Track fish with a single video recorder.
* 3D :three orthogonally positioned video cameras

* ID recognition has to be solved
I"

CDCL Tracking Fish Position and Pose Il

The Collective Dynamics and Control Laboratory at the University
of Maryland uses tools from projective geometry and Bayesian
estimation to reconstruct the 3D position and pose of individual
fish in a school.

https://www.youtube.com/watch?v=QtgnMvWZflY
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Data collection techniques — fish
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monitoring of fish populations
covering thousands of square
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* (noindividual recognition)
* Results:

* rapid transition from disordered
to highly synchronized behavior at
a critical density

Across-Bank Distance (km)

* small set of leaders can

significantly influence the actions , _ _
OAWRS snapshots showing the formation of vast herring shoals,
of a much Iarger group consisting of millions of Atlantic herring, on the northern flank of
Georges Bank (situated between the USA and Canada) on 3
October 2006. Source: Makris et al. (2009).

Along-Bank Distance (km)



Data collection techniques — birds
Stereo photography technique qD

Firstly: Major and Dill, 1978

3D positions of birds within flocks of
European starlings and dunlins

Ballerini et al. (2008) : 3D positions of up
to 2,600 starlings in airborne flocks with
high precision

Pro: detailed and accurate analysis of
nearest neighbor distances in large flocks
Con: no trajectory reconstruction of the
individual flock members

Main observation: starlings in huge flocks
interact with their 6—7 closest neighbors
(“topological approach”) instead of those

. i . ] . py . (a) and (b): stereometric photographs, taken from 25

belng within a given distance ( metrical meters apart. For reconstructing the flocks in 3D, each
’) bird’s image on the left had to be matched to its

d pproaCh ) corresponding image on the right using and computer

vision techniques. The small red squares indicate five of
these matched pairs. (c—f) The 3D reconstructions of the
analyzed flock from four different perspectives.

Source: From Ballerini et al. (2008).



Data collection techniques — birds - GPS

Firstly: ~2006

Record the trajectory of moving
animal with high temporal resolution
Unconfined region, natural
environment

Limits:

e growing cost of the research with
the growing number of tracked
flock members

* |imited accuracy of the devices.
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Data collection technique(s) — vertebrate flocks

e Bigger individuals
e Often unconfined space
* Mainly camera-based techniques
e First observations in the '70s
* Aerial photos — 2D
e African buffalo herds
* Later photos were replaced with
videos

* New technologies, like GPS (dogs)

* Individual recognition:

* By hand A snapshot of the processed video sequence, recording the
* Various computer algorithms feeding-queuing activity of a group of homing pigeons. Each
« Color bar technique bird is marked with a unique combination of three colors
serving as an individual code for a computer program

(rats, plgeons) designed to identify the individuals automatically.
*  Colors fade Circles divide the different activity regions:
* Individuals cover each central circle: feeding, blue: queuing, external circle: “not
other interested”. Reproduced from Nagy et al. (2013)

* Colors depend on the

actual lighting conditions .



Basic assumptions in collective motion models :

* The units are
— Rather similar
— moving with a nearly constant absolute velocity

— Capable of changing their direction (including active
alignment)

— interacting within a specific interaction range
— subject to a noise of a varying magnitude

* SPP: “Self-propelled particle”
(intrinsic source of motion)



The first models — Reynolds, 1987
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First well-known model. (Aoki)

Main motivation: to simulate the
visual appearance of a few dozen
coherently moving objects, like birds
or spaceships (computational
graphics)
“boid” - “bird-like object”
3 types of interactions:

— Separation: Avoidance of collisions

— Alignment: Heading in the direction
of the neighbors

— Cohesion: Staying close the center of
mass of the flock

“ROI” — range of interaction

https://www.youtube.com/watch?v=QbUPfMXXQlY



SVM — “Standard Vicsek Model”

* A Statistical physics type of approach

* The units
— move with a fixed absolute velocity v,
— assume the average direction of others within a given distance R.

* Perturbations are taken into account by adding a random angle to the average direction.
 The equations determining the motion of particle i:

xi(t+1)=x{)+v;(t+1)

(wi(®0),

vi(t+1)=v
o) |

+ perturbation

Or, in other form:
9;(t+1) = @()su) +¢

Where the noise ¢ is a random variable with a uniform distribution in the interval [-n/2,7n/2].

"Novel Type of Phase Transition in a System of Self-Driven Particles". Physical Review Letters.
75 (6): 1226-1229. T. Vicsek, A. Czirdk, E. Ben-Jacob, I. Cohen, O. Shochet (1995).



Parameters

* Density p (humber of particles in a volume R%, where d is the

dimension) (or R, the interaction range)
* Velocity v (fixed, same for all particles)
* Level of perturbation, n
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Direction of the
arrow: actual velocity
Trajectory of the last
20 time-step: curve
ROI: bar

Typical configurations of SPPs displayed for various values of density and noise. The actual velocity of a particle is
indicated by a small arrow, while its trajectory for the last 20 time step is shown by a short continuous curve. For

comparison, the radius of the interaction is displayed as a bar.

(a) At high densities and small noise (N =300, L =5 and n = 0.1) the motion becomes ordered.
(b) For small densities and noise (N =300, L = 25 and n = 0.1) the particles tend to form groups moving coherently,in

random directions.
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Parameters in the SVM

A system of 4.000 particles with a noise of n

=0.05,R=0.1

Zero noise, Vv,

https://www.youtube.com/watch?v
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hOI71hjDMQ8



Simulation results

Particles at t = 0.00 Density and velocity at t = (.00

Left panel: particle positions and velocities. Right panel: cell-averaged particle density (color
coded) and momentum density (arrows).

https://www.youtube.com/watch?v=zbOMe6GL9cM Y



Relation to the ferromagnetic model
Ferromagnets SPP models

Analogies:

e aligning rule (regarding the

* Hamiltonian tending to direction of motion)

align the spins in case of

equilibrium ferromagnets
G &  Amplitude of the random
* Temperature perturbation

Differences:
 Particles move

* Ordered phase can exist
at finite noise levels in 2D
SPP models

 Particles do not move

 There is no ordered phase
in finite temperatures in
2D

18



The order of the phase transition

Order parameter: normalized average velocity
N

_ 1 X
(p_N'vO vl

i=1

— Non-zero in the ordered phase
— Zero in the disordered phase
Long debate over the nature of the transition (1% or 2" order)

Result: it is the magnitude of the velocity and the way the noise is introduced into the
system what plays the key role

“Intrinsic noise”: the angle of the average velocity is computed and then a scalar noise
is added to this angle

“Extrinsic noise” / “Vectorial noise model”: a random vector is first added to the
average of the velocities and the final direction is determined only after this. When the
average velocity is small, this leads to a first-order type of transition.

Ir I
0.8 0.8
oL C e : 0.6 (FnS; :
0.4 intrinsic noise | M, extrinsic noise
0.2 o2k
oL ' | . | . ; R ol . | | | | 1 )
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8



Variants

Two main directions:

1. Models with alignment rule

* Topological vs. metric neighbors

— Differences in the models (dense to empty ROI)
— Biological relevance

— Systems with topological neighbors remain connected
2. Models without explicit alignment rule
e The motion may become ordered
 Collisions between the particles

 Alignmentis introduced into the collision in an indirect way
by the local interaction rules



Modeling

Assumptions
(in mathematical
framing)

(Real-lite) modeling 2
System )

certain aspect
measurement

Regarding that
Running the model

Observations

and ' Comparison 4 Model results

measurements
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Relations of the models and real systems

e JTrap”:

— different combinations of rules and parameters may
provide the same (or very similar) patterns of collective
behaviors.

— —> in order to prove that the emergent behavior of a
certain biological system obeys given principles, it is not
enough to provide a rule and a parameter and show that
they reproduce the observed behavior, but further
(biological) experiments are needed.

— Vice versa: the same rule (and parameter) set may result
in different collective behavior in the very same system

* General (,minimal”) vs. system specific models



General (minimal) vs. system specific models

* General models: Few parameters, few assumptions
“minimal”), general results

* System specific models: include system-specific details
— Individuals with different properties (segregating units)
— Insect migration (e.g. locusts)
— Predator-prey systems
— Etc.

e Applications (among many):
— Robotics / military applications
— Traffic simulation
* Vehicular traffic

* Pedestrian motion (urban design, building design)
* Panic -



Moving in 3D (fish, bird) — the Couzin model

* Biologically realistic, yet still simple individual based
* Individuals obey to the following basic rules:

— (i) they continually attempt to maintain a certain distance among
themselves and their mates,

— (ii) if they are not performing an avoidance maneuver (described by rule
i), then they are attracted towards their mates, and

— (iii) they align their direction to their neighbors.

* Their perception zone (in which they interact with the others) is
divided into three non-overlapping regions

Simulating Swarm Intelligence

Reseachers crealed del o rm behavioe by programming
ndividuals 1o maintain parsonal space while turning and moving
n the same direchion as othars

Area of repulsion

A simulated animal —

sadiesens oo, - Personal space — avoiding collision
iimals entering the area

Area of orientation . .

it i e = Orientation

scidtin ,
Thw arimal whl 4 - Cohesion; move forward the others

Couzin ID, Krause J, James R et al, Collective memory and spatial sorting in animal groups, J. theor Biol, 218, 1-11



Moving in 3D (fish, bird) — the Couzin model

The interaction zones, centered around each individual.

e ZOR, the inner-most sphere with radius R,, is the “Zone of
Repulsion”
If others enter this zone, the individual will
response by moving away from them into the
opposite direction, that is, it will head towards

—_— —>

ny Tj7Ti
Rl
being in the ZOR.
The interpretation of this zone is to maintain a
personal space and to ensure the avoidance of
collisions.

where n,. is the number of individuals

Z00: “Zone of Orientation”. If no mates are in the ZOR, the individual aligns itself with
neighbors within this ZOO region.
ZOA: “Zone of Attraction”.
The interpretation of this region is that group-living individuals continually attempt to join a
group and to avoid being alone or in the periphery.
a “Field of perception” (can be 360°)
“Blind volume” behind the individual: a cone with interior angle (360-a)°. Here neighbors are
undetectable.



Couzin model — cont.

* System properties:

— Order parameter: .
* v;%is unit direction
vector of individual i, so

1 N * (@ (order param) is the
QD(t) — U-u(t) same as in the SVM
N l
=1 * T¢, position of the group
center
* Tisgr =Ti —Tgr
— (group) anguar momentum: vectorial difference of
the position of individual
N [ and the group center
* @Group center:
1 —
= N
Mg (t) = — Er-_ t) X v;u(t i Rl
Gr N i Gr( ) L ( ) 2o(t) = _Zri(t)
=1 N i=1

(sum of the angular momenta of the group
members around the center)



| -
0
nlluuo”;
©
ea (@)
© w =
ree
Ohrr
o ¥ © O
< r
t)ml
..rma
Qo S O
mttm
5§25
<
Wmmc
= o
© a & 2

Couzin model — Basic types

parallel orientation.

b) Torus or milling: Individuals
rotate around an empty core
with a randomly chosen
direction. The order

, but the

parameter (¢p) is small

) is

angular momentum (m,,

big.

c) Dynamic parallel group:

This formation is much more
mobile than either of the

previous ones. The order

parameter () is high but the

) is

angular momentum (mg,

small.

d) Highly parallel group: a highly aligned formation characterized by very high order parameter

27

(¢p) and low angular momentum (mg,).



Basic types — parameter setting

a) Swarm

b) Torus or milling:

big AR, (width of the Zone Of Attraction)
small AR, (width of the Zone Of Orientation)

c) Dynamic parallel group:

Of Attraction)

(width of the Zone Of

intermediate to high AR, (width of the Zone

(0]

intermediate AR

Orientation)
increasing AR further (width of the Zone Of

d) Highly parallel group:

Orientation)

ZOR-Zone
of repulsion

Z0O0 - Zone of
orientation

AR, : width of the ZOA
AR, : width of the ZOO

ZOA - Zone of
attraction

28



The role of adhesion

e Mechanism determining tissue movements?

— Dates back to the beginning of the 20t
century

— 1907 Wilson discovered that sponge cells
which have been previously squeezed through
a mesh of fine bolting-cloth reunite again
reconstituting themselves into a functioning
sponge
— Early studies
e Cell sorting is a resultant of inhomogeneities in the
immediate environment (for example of pressure)
— Since then

* the movements are due to intrinsic properties of
the individual tissues themselves




Collective behavior of fish keratocytes

Observations / measurements

The collective behavior of fish
keratocytes for three different
densities. The normalized density, p~ is
defined as p~ = p/pmax, where pmax is
the maximal observed density, 25
cells/100 x 100 pum?2.

(a) p = 1.8 cells/100 x 100 pm?2
corresponding to p” = 0.072

(b) p =5.3 cells/100 x 100um2 which
isp =0.212, and

(c) p = 14.7 cells/100 x 100 um2, p~ =
0.588. The scale bar indicates 200 um.

/ As cell density increases cell motility
A ; g undergoes to collective ordering. The
/| >\(>__ A BT o 20 ;’;W / speed of coherently moving cells is
— &L~ AT Y smaller than that of solitary cells. (d)-
order 1 - (f) on the tégttomlpa.n.el defpiﬁts thlcle
para- ._I_"—I—' e corresponding velocities of the cells.
°° Order parameter versus the normalized cell density. The error bars
06 | + show the standard error of the density and order parameter.
04T “L Source: Szabd, B., Sz818si, G.J., Gdnci, B., Juranyi, Zs., Selmeczi, D.,
02 T Vicsek, T., 2006. Phase transition in the collective migration of
tissue cells: experiment and models.
0 0 01 02 03 04 05 06 07 08 09 1 Physical Review E 74, 061908. 30

Normalized cell density



Collective behavior of fish keratocytes — The model

 The model cells are self-propelled particles (SPP)

* Short-range attractive—repulsive inter-cellular forces account for the organization of the
motile keratocyte cells into coherent groups.

* Direction of the cells: according to the net-force acting on them.

e 2D flocking model:
— N SPPs move with a constant speed v, and
— mobility u
— in the direction of the unit vector n(t) (can be described by 9,(t) as well)
— while the i and j particles experiences the inter-cellular force F(r;r,).
— The motionof celli(€1, ..., N)in the position r(t) is described by

- N
— = von;(t) + z F(rirj) o & Oy a0 SR
_I:]- 3 0K

* The direction attempts to relax to v,(t) = dr(t)/dt within '
a relaxation time t. . 5 ¢ :

* ¢ noise, w OF R

* e, :unit vector orthogonal to the plane of motion Simulation results obtained by solving the equations with
periodic boundary conditions.

The model exhibits a continuous phase transition from

dl?r-” ([) _ 1 arcsin [(ﬁ,(f) Ei(r) ) . Ez-‘ ‘|“§ disordered to ordered phase.
dt T lv; (t)]

"

Many authors put much emphasis on the actual shape and plasticity of the cells as well

Source: Szabd, B., Sz616si, G.J., Gonci, B., Juranyi, Zs., Selmeczi, D., Vicsek, T., 2006. Phase transition in the collective migration of tissue cells: experiment and modglg.
Physical Review E 74, 061908.



Models with segregating units

* Special case: an originally
heterogeneous mixture of units
segregate into two (or more)
homogeneous clusters without
any kind of external field.

2D example:
— Granular segregation

— Cell sorting

* development of organs in an
embryo

* regeneration after tissue
dissociation

Granular segregation in a shallow container

Granular segregation in shallow container
(Nicolas Rivas)

Perfect hard spheres inside a shallow, quasi-two-dimensional
container, vibrated in the vertical direction. Two types of
particles: blue ten times heavier than red ones (same size).
Periodic boundary conditions.

Paper: http://iopscience.iop.org/1367-2630/1...

https://www.youtube.com/watch?v=I0AealEWcCI&t=5s

* two kinds of
cells, differing in
their interaction
intensities.

e 800 cells
32


https://www.youtube.com/redirect?redir_token=383tOfxZ6szDdT9LSgX0Cm_g0Zl8MTUwOTc5MzEzMUAxNTA5NzA2NzMx&q=http://iopscience.iop.org/1367-2630/13/5/055018/fulltext/&event=video_description&v=l0Aea1EWcCI

Models with segregating units

 diverse particles (behavioral / motivational) exhibit sorting:
— relative positional change, according to the actual inner state
— Relative differences play a key role

— If the individual variations are persistent then the group will
reassemble to its’ original state after perturbations

e “Swarm chemistry” — by Hiroki Sayama
Homepage: http://bingweb.binghamton.edu/~sayama/SwarmChemistry/

 Emergent patterns in systems
of particles with different

kinetic parameters
— Preferred speed, ROI, etc.
— Infinite 2D space

htep:/iflexmenkey.blogspot.co.uk/


http://bingweb.binghamton.edu/~sayama/SwarmChemistry/

Model: school of spawning herrings (vabo & Skaret 2008)

3D individual-based model
Units differed in their motivational level
(controlled by a parameter)
The motion of each individual:
— (1) avoiding boundaries
— (2) social attraction
— (3) social repulsion

— (4) moving towards the bottom to
spawn

— (5) avoiding predation

Results:

* Similar motivational levels results an integrated school, diverse inner states produce a
system with frequent split-offs.

* Intermediate degree of homogeneity: More complex structures, like layers connected with
vertical cylindrical shaped schools

» describing the observations (Axelsen et al., 2000) allowing ovulating herring to move
across the layers
— the level of motivational synchronization among fish determines the unity of the school
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Case study: Pedestrian motion;
Models and their relations

* Always 2D (<>vehicle 1D)

* Traffic models are usually categorized according to the scale of
the variables of the model:

— Macroscopic,
— Microscopic, and
— Mesoscopic

Fredrik Johansson, Microscopic Modeling and Simulation of Pedestrian Traffic,
Department of Science and Technology, Linkdping University, 2013



Macroscopic models /
continuum dynamic approach

* Describes the macroscopic (or average) properties of the system

* Assumes that traffic can be regarded as a fluid, or continuum, disregarding the fact
that it is composed of discrete entities such as cars or pedestrians
— No explicit reference to the underlying microscopic nature, - no personal preferences

— Central assumption:
* no (sufficiently little) significant information is lost when the microscopic details are averaged out
* the units are identical, unthinking elements
— successful approach in physics
— Bit less well founded in traffic modeling, but has been successful, primarily in car traffic modeling
* The basis of fluid dynamic models of pedestrian traffic is the two dimensional
continuity equation
op +V-q=0
dt
where p : mean density ( p = p(r,t) ),

q = pu:meanflow( q=q(r,t) ),

u : mean speed (the assumption that u is a function of the density, comes from
observations)



Mesoscopic models

* Each individual is represented individually and
can have individual properties (€< Macroscopic)

e But the individual walker’s behavior is still
determined by average quantities



Microscopic models

e describe every individual walker and its interaction with
other walkers and the environment

* there is no averaging process - the heterogeneity of the
population can be explicitly included (personal drives,
motivations, preferred directions, etc.)

* Four basic types (partially overlapping, not well defined)
1. cellular automaton based models
2. agent based models
3. game theoretic models
4. force based models (Social force model)



(1) Cellular automation based models

Very first models (1980’s), but still in use
Discrete in space and time

Each unit is a cell, either occupied by a pedestrian (or obstacle)

or empty
At each time step, pedestrians move into one of the
neighboring cells or stay where they are.
Limitation:
— the size of a walker is fixed and constant over the population
— Discrete size of movement at a time
(but different speeds and goals can be considered)
Pro-s:
— Computational efficiency
— Simple update rules - some general are easy to obtain
— The grids can be refined
One of the earliest models: Gipps and Marksjo (1985): (the
“basics”)
— grid with quadratic cells

— The preferred next cell is the one that reduces the remaining
distance to the walker’s destination the most

— The navigation is modified by the presence of other walkers:
repulsive potential around each walker
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(2) Agent based models

* basically CA models with “very complex” update

rules

can be either continuous or discrete, both in space and time
can be governed by practically any type of behavioral rules.

often have a large set of behavioral rules, each dedicated to a
specific situation.

The update procedure occurs in two steps:

1. the agent determines the situation it is in by one or several
test

2. Executes the rule connected to that situation
Pro: can be very detailed

Con: high computational cost, hard to analytically provide
properties



(3) Game theoretic models

* Movement is an “action”

* Each pedestrian plans his/her path according
to her beliefs about how other pedestrians

will move in the future.

— Example:
* Pre defined strategies
* an empirical distribution over the strategies of other
players
* Etc.



(4) Force based models/social force models (SFM)

Forces from walls

e Helbing and Molnar (1995) ‘

e People walk in crowded environments by using
automatic (subconscious) strategies for avoiding
collisions and keeping comfortable distances

* These automatic strategies can be encoded as simple
behavioral rules

Driving force

Forces from
other pedestrians

Main idea: the influences of elements of the environment on the
behavior of the pedestrians appear as social forces.

» Social forces are not “real” forces (in a Newtonian meaning), rather, are a description of
the motivation of the pedestrian to change its velocity, induced by some elements in the
environment.

* the effects of several social forces, just like regular forces, are assumed to add as vectors

* Operates in continuous space, allowing detailed representation of the geometry of the
environment
* proven to reproduce several well known features of pedestrian traffic:
— dynamic lane formation in opposing flows
— oscillations at bottlenecks
— evacuation scenarios



Dynamic lane formation in opposing flows

Experiment:

Walkers self-organize into lanes to avoid
interactions with oncoming pedestrians. This helps
them to move faster than is otherwise possible.
This happens effortlessly and requires no
communication
https://www.youtube.com/watch?v=J4)__IO0OV2E
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Model:

F. Zanlungo, T. Ikeda and T. Kanda,
Social force model with explicit collision prediction,
Europhysics Letters, Volume 93, 68005

https://www.youtube.com/watch?v=u2kEM2Ed6Xk
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